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Abstract. When expressed iXenopusoocytes KAAT1  tuted proteoliposomes. From the first studies, it was ap-
increases tenfold the transportiefeucine. Substitution parent that several transporters were simultaneously ac-
of NaCl with 100 nu LiCl, RbCI or KCI allows a re- tive in a tissue and also in a single cell. Therefore many
duced but significant activation af-leucine uptakes. studies were addressed towards discriminating between
Chloride-dependence is not strict since other pseudoan increasing number of transport systems with overlap-
halide anions such as thyocyanate are accepted. KAATping substrate specificities.

is highly sensitive to pH. It can transpareucine at pH A clear discrimination was made between ‘Na
5.5 and 8, but the maximum uptake has been observed gependent and Nandependent systems: the former be-
pH 10, near to the physiological pH value, when aminojng able to transduce the energy stored in thé Nia-

and carboxylic groups are both deprotonated. The phjient for concentrative amino acid uptake (cotrans-
value mainly influences th&/,,, in Na" activation  porter), the latter being involved in passive facilitated
curves and-leucine kinetics. The kinetic parameters aregmino acid uptake (uniporter)_ Concentrative amino acid
Kmnna = 4.6 £2 MM, Vipgna= 14.8 £ 1.7 pmol/oocyte/S  yptake can also occur by*reoupled transport, by ex-
min for pH 8.0 andK,ng = 2.8 £ 0.7 M1, Vipauna = change mechanisms with other amino acids, or simply by
31.3 + 1.9 pmol/oocyte/5 min for pH 10.0. The kinetic the energization of the membrane electrical potential
parameters of-leucine uptake areK, = 120.4 + 24.2  (Castagna et al., 1997). One of the most particular amino
M, Vinax = 23.2 = 1.4 pmol/oocyte/5 min at pH 8.0 and acid cotransport mechanisms was found in the midgut of
Ky = 81.3 £ 24.2uM, Vi, = 65.6 £ 3.9 pmol/oocyte/S  |epidopteran larvae where*Kcoupled amino acid trans-
min at pH 10.0. porters are expressed (Giordana et al., 1982).

On the basis of inhibition experiments, the structural In recent years, the molecular identification of some
features required for KAAT1 substrates are: (i) a carbox-amino acid transport proteins allowed the correlation of
ylic group, (ii) an unsubstituted-amino group, (iii) the  structure and function and the unambiguous assessment
side chain is unnecessary, if present it should be unof some physiological features to a particular protein
charged regardless of length and ramification. (Palacin et al., 1998). The first 'Kcoupled neutral

amino acid cotransporter (KAAT1) has recently been
Key words: Amino acid transport — Cotransport — cloned (Castagna et al., 1998) from a larval lepidopteran
KAAT1 — Inhibition — Xenopus laevisocyte midgut cDNA library Manduca sexta This cotrans-
porter is expressed in the brush-border apical membrane
of absorptive cells and, to match the peculiar ionic con-
ditions of this tissue, it accepts as driver cations both

. . . potassium and sodium, the electrochemical gradients of
Over the past few decades amino acid absorption h hich favor their movement from lumen to cells.

been studied by means of many different experimentaj s a1 cDNA encodes a 634-aa residue protein with a

approaches involving whole organs, epithelial tissues,jjast (38%) identity with amino acid transporters be-

isolated cells, purified membrane vesicles and reconstirongmg to the N& and CI-dependent GABA trans-
porter superfamily.

- The epithelial tissue lining the large gut of leaf-

Correspondence tov.F. Sacchi eating lepidopteran larvae generates high electrical po-
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tentials and steep ionic gradients between lumen and The data reported in most figures are the mean of KAAT1-
cells. The functional unit of this tissue is made up of am.edia'lteq transport of severgl independent experiments, unlgss other-
goblet cell surrounded by about five electrically coupled""'se indicated. KAAT1-mediated trar}sport reprt_asents the difference
. . between the mean uptake measured in cRNA-injected oocytes and the
columnar cells. A proton V-ATPase located in the apical . - uptake observed in water-injected oocytes.
membrane of goblet cells generates a high transmucosal
membrane potential, lumen positive, which energizes a
2H'/K* antiporter in goblet cells and a*kdependent KINETICS
gmlno acid Uptak.e n COIumr.]ar cells. The. antiporter me- inetics were performed in KAAT1 cRNA- and in water-injected oo-
|a_te_s th_e potassium secretion and contributes to the ytes and kinetic parameters of KAAT1-mediatedeucine uptake
kalinization of the lumen, where pH can reach extremelywere calculated using a multiparameter, iterative, nonlinear regression
high values (Wieczorek et al., 1989; Dow, 1992; Harveyprogram (SigmaPlot, Jandel, CA).
& Wieczorek, 1997; Harvey et al., 1998). L-[*H]leucine concentrations ranged from 25 to 1Q0@ (3700—
Since KAAT1 is a transporter characterized by a 7400 KBg/ml). In N& activation expgriments, Naconcentrations
broad specificity both for ions and cotransported aming@"9ed from 0 to 100 m andv-[*H]leucine was 0.2 m.
acids, the aim of this study is to analyze the structural
features required for KAAT1 substrates, determine theresylts
kinetic parameters of leucine transport and study the de-
pendence of amino acid transport on extracellular pH
using determinations of radio labeled amino acid uptake©N SELECTIVITY

in KAAT1 cRNA-injected Xenopus laevisocytes. . . .
: P y Leucine uptake measured in KAAT1 expressing oocytes

was about tenfold higher compared with control water
Materials and Methods injected oocytes in the presence of inward Ngadient
(Fig. 1). The most peculiar feature of KAAT1-mediated
leucine transport is a broad cation selectivity. Accord-
OocyTE EXPRESSION OFKAAT1 ingly, as shown in Fig. 1, substitution of NaCl with 100
_ o m _ mwm LiCl, RbCI or cholineCl allowed a reduced but sig-
KAATL cRNA was obtained by in vitro transcription using T7 RNA - iicant activation of leucine uptakes. The choline effect
polymerase (Stratagene) after linearizatiorNmt1 (Gibco) of the con- . . .
struct p-SPORT1 KAAT1-cDNA. Plasmid extraction was performed raises several questions, and paf“cu'ar'}’ Wheth?r O.r not
using QIAGEN kit. the cotransporter can also work as a uniport, which is to
After isolation fromXenopus laevispocytes were defolliculated be addressed in the discussion. A modest activation was
with 1 mg/ml of collagenase A (Boehringer Mannheim) in #Ciiee  also observed after substitution of external sodium by
buffer OR 11 (in mv): 82.5 NaCl, 2 KCI, 1 MgCj, 5 HEPES/Tris pH 150 mm KCI (insert), although in this condition mem-

7.5 for 1 hr at room temperature. Mature (stage V-VI) and healthybrane potential is drastically reducednpublished ob-
defolliculated oocytes were selected and maintained at 16.5°C in

Barth's medium (in m): 88 NaCl, 1 KCl, 0.82 MgSQ 0.41 CaCl servations. '_I'he potassium effect, even if significant,
0.33 Ca(NQ),, 2.4 NaHCQ, 10 HEPES/Tris pH 7.5 with the addition Ca@nnot be directly compared to those of the other tested
of 50 mg/l gentamycin sulfate. On the following day, oocytes were Cations, but it confirms the unusual ability of this co-
injected with the synthesized cRNA (12.5 ng/oocyte) or with water (50transporter to transport 'Kas previously demonstrated

nl) as the control, using the Drummond injection system. with electrophysiological studies (Castagna et al., 1998).
To further characterize the ionic dependence of KAAT1-
induced transport, we tested the effect of substitution of
chloride with other anions. Figure 2 shows that KAAT1-
The uptake of 0.1 m L-[*H]leucine and other 0.1 m radiolabeled mediated transport is anion dependent since Ie_UC|_ne up-
compounds @H]glycine, L-[*H]lysine, L-[*H]glutamic acid, }Cla- take was reduced to 26% of the control by substitution of
methylo-glucopyranoside and-[1-*“C]mannitol) (200-500 KBg/ml, ~ chloride with gluconate and to 54% by substitution with
Amersham-Pharmacia-Biotech) was measured 3 days after injectioracetate, whereas thiocyanate had no significant influence
Groups of 8-10 oocytes were incubated in 100f uptake splution (in " onthe uptake and presumably it can efficiently substitute
mw): 100 Nacl, 2 KCl, 1 CaGl 1 MgCl, 10 HEPES/Tris pH 8.0. — for C|. The chloride dependence observed here has some

For the upt:_:lke with var_led Neconcentration, l\_IaC! was replaced to- Similarity with that found for GABA transporter GAT2,
tally or partially by choline-Cl. Unless otherwise indicated, transport

experiments were performed at pH 8.0. For pH-dependence expertn® ONly member of GABA family present in peripheral
ments, HEPES/Tris was used in the range 7-9 to prepare uptake solfisSsues (Borden et al., 1992).

tions with varied pH, whereas MES (2-(N-morpholino)ethanesulfonic
acid), CAPSO (3-(cyclohexylamino)-2-hydroxy-1-propanesulfonic
acid) and CAPS (3-cyclohexylamino)-1-propanesulfonic acid) werePH DEPENDENCE

used for pH 5.5, 9.5 and 10.0 respectively. To minimize oocytes dam-_ . . .

age, uptakes at extreme pH values were performed after 5 min oSince the luminal environment danduca sextanidgut

incubation. has a very high pH value, up to 11 (Azuma et al., 1995),

TRANSPORT EXPERIMENTS
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and several studies have shown that amino acid transpoeters wereK, na = 4.6 + 2 MM, Ve = 14.8 £ 1.7
capacity increased at alkaline pH values (Sacchi et alpmol/oocyte/5 min for pH 8.0 an&,n, = 2.8 + 0.7,
1990; Hennigan et al., 1993; Giordana et al., 1998), weV,,.xna = 31.3 £ 1.9 pmol/oocyte/5 min for pH 10.0.
tested the pH dependence of leucine uptake in KAAT1At the same values of pH, 8.0 and 10.8eucine uptake
expressing oocytes. KAAT1 dependence on extracelluwas also measured as a function of leucine concentration.
lar pH was studied at pH values ranging from 7.9 to 9.8,Figure 5 shows that in both conditions data fitted to a
and the uptake experiments were performed after a shoNlichaelis-Menten curve with the following parameters:
incubation time (5 min) to avoid effects due to oocyte K., = 120.4 = 24.2uM, V,,ox = 23.2 = 1.4 pmol/oocyte/
damage. Under these conditions/eucine uptake in- 5 minfor pH 8.0 anK,,, = 81.3 £ 24.2uM, V., = 65.6
creased about twofold varying the pH values from 7.9 tox 3.9 pmol/oocyte/5 min for pH 10.0. Kinetic param-
9.8 (Fig. 3). eters calculated at pH 8 are in good agreement with those
The pH dependence of KAAT1-mediated transportdetermined by electrophysiological studies (Castagna et
was investigated in terms of the effect on"Nectivation  al., 1998).
of L-leucine uptake and leucine kinetics. Figure 4 shows
data obtained measuring 0.2vm.-leucine uptakevs.  |NHIBITION EXPERIMENTS
extracellular N concentration at pH 8.0 and 10.0. Data
of induced leucine transport fitted to Michaelis-Menten The ability of KAAT1-expressing oocytes to transport
curves in both the tested conditions. The kinetic paramamino acids and other organic substrates was tested in a
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first set of experiments performed by measuring the up{data not showh therefore the experiments were per-
take of radiolabeled-leucine, glycineL-glutamic acid, formed measuring leucine uptake in water and in
L-lysine,a-methyl-D-glucopyranoside anokmannitol, in -~ KAAT1 cRNA-injected oocytes after 60 min of incuba-
the presence of 100mNaCl at pH 8.0. Figure 6 reports tion.

the uptakes of the above compounds in cRNA-injected  The substrate selectivity of KAAT1-mediated up-
and water-injected oocytes. In additionitdeucine, gly-  take was then examined by inhibition experiments in
cine is also recognized as a substrate by KAAT1,which 0.1 nmv radiolabeledL-leucine uptake was mea-
whereas acid and basic amino acidsg(utamic acid, sured in the presence of 5SMmamino acids or related
L-lysine), a-methyl-d-glucopyranoside and-mannitol  compounds. The results are expressed as percentages of
are not transported. In the subsequent experiments the control uptakes in the absence of the inhibitors. As
leucine was used as a test amino acid and its uptake wddg. 7 shows, small, bulky, branched and unbranched
always considered to evaluate KAAT1 expression. Weneutral amino acids exerted a strong inhibition on leucine
also observed that-leucine uptake in KAAT1-ex- transport since the uptake was reduced to 4-0% of the
pressing oocytes is linear up to 60 min of incubationcontrol. Amino acids with uncharged polar side chains
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Fig. 6. KAAT1-induced substrate transport. Uptake of 0.1 mrleucine, glycine,L-glutamic acid,L-lysine, a-methylb-glucopyranoside and
p-mannitol in KAAT1 cRNA-injected (black bars) oocytes and water-injected oocytes (gray bars). Data are expressed as percent of the uptak
obtained in the presence ofleucine and values are meansefor 8-10 oocytes measured in a representative experiment.

at the tested pH (threonine, serine, glutamine, cysteine  The inhibitory effect of amino acids with a charged
and histidine) still have a remarkable inhibitory effect. side chain is also reported in Fig. 7. Among the tested
Data in Fig. 7 show that the presence of those amin@mino acids only lysine showed a significant inhibitory
acids reduced-leucine uptake to 10-6% of the control effect (55%), whereas arginine showed a modest inhibi-
uptake. A similar level of inhibition was observed for tion (30%) and glutamate inhibition was not significant.
glycine that, as shown in the same figure, decreased th€he insert of the figure suggests a relatively low stereo-
uptake to 18% of the control. Proline and hydroxypro- specificity of KAAT1. Both stereocisomers of leucine
line reduced leucine uptake to 30 and 40% respectivelyand methionine exerted a high inhibition of leucine up-
(Fig. 7). takes, butp-enantiomers showed a significantly lower
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Fig. 7. Inhibition of KAAT1 inducedL-leucine uptake. Uptake of 0.1nm.-leucine measured in the presence of 8 amino acid inhibitor. Data
are the KAAT1-mediated transport presented as percent of the control in the absence of inhibitor and values are thesott#mee-independent
experiments performed with 8-10 oocytes.

inhibition than theL-forms. Figure 8 shows the inhibi- . . o
tions exerted by -phenylalanine (0.2 m), L-proline (5 pentane-carboxylic acid), still exerted a strong inhibition
mm) and taurine (5 m) on L-leucine kinetics, the data of leucine uptake that was reduced to 18 and 3% respec-
are presented as Lineweaver-Burk Plot. As expected thtvely. Inthe same figure the effect of methylation of the

tested compounds are competitive inhibitors of leucine2Mino group is also considered. Strong inhibition (90%)
uptake. was also observed for AlBafamino isobutyric acid),

Due to the strong reduction ofleucine uptake ob- Whereas no inhibition was detected for its methyl deriva-

served in the presence of unbranched and branched nefive, MeAIB (a-methyl amino isobutyric acid). MeAIB
tral amino acids, we further investigated the influence ofis @ model substrate accepted by system A but excluded
side chain modification in terms of lengths or ramifica- by system B and apparently also by KAAT1 (Doyle &
tion position. Figure 9 shows that the inhibition exertedMcGivan, 1992).

by unbranched amino acids did not increase with the  The effect of GABA y-aminobutyric acid)3-ala-
length of the side chain-alanine and homologs, the side nine and taurine (2-aminoethanesulfonic acid) 1on
chains of which vary between 1 (alanine) and 4 (norleudeucine uptake was also tested (Fig. 11): GABA and
cine) carbon atoms in length, reduaetkucine uptake to  B-alanine caused respectively 10 and 38% inhibition,
about 5% of the control. Interestingly, the inhibition ob- nevertheless taurine, which possesses a structure similar
served for glycine, an amino acid that lacks a side chainto B-alanine but with a sulfonic group replacing the car-
is lower and significantly different from that of the above boxylic one, exerted a strong inhibition (72%).
compounds. In the insert of Fig. 9 the effects of leucine  As expected for an amino acid transporter, n-butyric
isomers that differ in the position of the methyl group acid and n-butylamine, did not reducdeucine uptake.
(isoleucine and norleucine) are compared. All of themNor was aB-amino alcohol such asL-B-hydroxyphen-
were able to inhibit leucine uptake without any signifi- ethylamine able to inhibit significantly-leucine trans-
cant difference. port (Fig. 12).

The relationship between amino acid structure and  Due to pH dependence of KAAT1-mediated trans-
inhibition was also evaluated using compounds in whichport, we tested the inhibition ability of some amino acids
the side chain is characterized by a cyclic structure inat pH 5.5, 8.0 and 10.0. We selected representative mol-
volving the carbon inx position. As shown in Fig. 10, ecules of the three classes of amino acids: neutral (
synthetic amino acids such as BCH (2-amino-2-norborphenylalanine); acidL¢églutamic acid) and basia {ly-
nanecarboxylic acid) and cycloleucine (1-amino-cyclo-sine). Figure 13 shows that the inhibitory effect iof
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phenylalanine was not influenced by variation of extra-features of a protein and allows attributing some prop-
cellular pH, whereas-glutamic acid was not able to erties to a specific molecule rather than to a population of
inhibit L-leucine uptake at pH 8.0 but showed 100% similar but not identical transporters. This is particularly
inhibition at pH 5.5 and 58% inhibition at pH 10.0 com- true for amino acid transporters that often present over-
pared to control uptake at the same pHlysine inhibi-  lapping selectivity for substrates and differ in only a few
tion of L-leucine uptake was 41% at pH 8, 24% at pH 5.5aspects. The number of cloned amino acid transporters
and 87% at pH 10. The insert of the figure shows thatis rapidly increasing and they can usually be grouped in
control L-leucine uptakes in the absence of inhibitorsfamilies (Palacin et al., 1998). The amino acid sequence
increased sixfold varying the pH value from 5.5 to 10.0.of KAAT1 indicates a modest but significant identity
with the superfamily of GABA transporters. The struc-
tures of proteins belonging to this family are predicted to
Discussion have 12 membrane-spanning domains and a large extra-
cellular loop between helices 3 and 4. These features are
The expression of a transporter Xenopus laevioo-  also shared by KAAT1. In addition, these transporters
cytes greatly simplifies the study of the physiological have a channel mode of ion conduction in the absence of
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the organic substrates as shown by the uncoupled cuments. In this kind of experiment Navas substituted by
rents measured in electrophysiological experimentsholine but the hypothesis that this cation can diive
(Mager et al.,, 1993; Bossi et al.,, 1999). The GABA leucine uptake is ruled out by the experiments showing
transporters are Naand CI' coupled but GAT-1, GAT- that choline does not cause any inward current in the
2, and GAT-3 vary in their dependence on external Cl presence of-leucine (Castagna et al., 1998). Alterna-
and KAAT1 seems to be more similar to GAT-2 since tively, the transporter could operate either as a cotrans-
when CI was substituted by acetate, transport by GAT-2porter or as a uniporter. This hypothesis is very attrac-
was decreased to 43% of the control and leucine trangive and is also supported by some previous results ob-
port by KAAT1 was decreased to 54% (Fig. 2) (Borden,tained in brush border membrane vesicles (Sacchi et al.,
1996). Furthermore, the chloride-dependence is noi990; Giordana et al., 1998; Leonardi et al., 1998), how-
strict since other pseudohalide anions such as thyocyaever, as shown in Fig. 4, tH€,,\.iS 2—4 mu, and there-
nate are accepted. Cation dependence shows a clear dfsre a small amount of Naextruded by the NaK*-
tinction between GABA transporters and KAAT1 since ATPase might easily activate the transporter expressed in
the latter exhibits broader cation selectivity acceptirig K oocyte. Accordingly, preliminary experiments per-
and Li" (Fig. 1). This figure also shows a significant formed in the absence of sodium and in the presence of
mean value of leucine transport in the absence of, Na ouabain showed no KAAT1-mediatadleucine uptake
however this result was not observed in all the experi{data not shown The high affinity of KAAT1 for Na
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is a further difference with GABA transporters that have dopteran larvae that have a diet with high potassium and
an affinity for Na"” one order of magnitude lower (Mager, low sodium content. Therefore, the kinetic features of
1996). Compared with other amino acid transportersKAAT1 may have the function of ensuring sodium and

KAATL1 presents a broadening of the cation specificity amino acid uptake in an epithelium which contains no
and an increased Naffinity which are probably related conventional sodium pump (Sacchi et al., 1999).

to the diet of these larvae. Indeed, the absorption of an  Many studies in different species have shown that
essential ion such as Nas a major problem for lepi- the amino acid transport in membrane vesicles from lepi-
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dopteran larvae increased under high pH conditions re-  The high inhibition ofL-leucine uptake observed in
sembling the in vivo conditions of the midgut (Sacchi etthe presence of glycine (Fig. 7) and the high KAAT1-
al., 1990; Hennigan et al., 1993; Giordana et al., 1998)mediated uptake of radiolabeled glycine (Fig. 6) indicate
The results reported here show a large increase ahat the presence of a side chain is not a critical param-
KAAT1 mediatedL-leucine uptake at high pH values eter for the substrate structure. The presence of a neutral
(Fig. 3). This uptake increase could be due to pH effectapolar side chain on the-amino acidic structure raises
on the transport protein and/or on substrate chargeslightly the inhibition (Fig. 7), but modifications of the
since then-amino group is deprotonated in alkaline so- side chain in terms of size, length, presence and position
lutions and neutral amino acids bear a net negativef ramification do not influence inhibition of-leucine
charge. It should be noted that the steepest uptake inransport (Fig. 9) as also observed in brush border mem-
crease is observed near the pH value corresponding torane vesicles (Parthasarathy et al., 1994). Charged
L-leucine pK; (9.7). AH"-or OH -coupled KAAT1 me- groups on the side chain present in ionic amino acids
diated amino acid transport seems to be excluded on thguch as L-glutamic acid,-lysine and.-arginine, have a
basis of experiments performed with membrane vesiclegjestabilizing effect on the interaction inhibitor-
although a pH gradient can energize transport processasansporter (Fig. 7), moreovar-glutamic acid and.-
(Sacchi et al., 1990; Giordana et al., 1998). Besides, alysine, as shown in Fig. 6 are not transported by KAAT1
inward directed proton gradient (g} = 5.5) causes a at pH 8. Polar groups that, at the tested pH are un-
reduction ofL-leucine uptake (Fig. 13), which seems to charged (imidazole in histidine, hydroxyl in serine and
indicate that, despite the broad cation specificity ofthreonine) or only partially charged (thiol in cysteine) do
KAAT1, H"* cannot act as a driver for amino acid uptake. not significantly decrease the inhibition ability of the
KAAT1 transport activity is favoured by the high extra- molecule (Fig. 7). Nevertheless, as already shown for
cellular pH that causes an increase of leucWg,, cloned transporters, ATBand ASCT1 and ASCT2
whereas thé,, values for both leucine and Nare not  (Kekuda et al., 1997; Tamarappoo et al., 1996; Tate et
affected. However, if leucine kinetics are plotted as aal., 1996), L-glutamic acid is able to inhibit KAAT1
function of the anionic form of leucine (Fig. 14) a single mediatedL-leucine uptake at acid pH (Fig. 13). These
hyperbolic curve results and at different pH values, simi-data are probably related to the increase of glutamic acid
lar uptakes are obtained for similar anionic leucine con-with a non-ionized side chain. In fact, the variation of pH
centrations. This result supports the hypothesis that thbas no effect on inhibition exerted hyphenylalanine
pH effect is mainly on the amino acid rather than on thewhich lacks ionizable groups on the side chain (Fig. 13).
transport protein. Interestingly an increased inhibitory effect is observed
The lumen alkalinization in the midgut of lepidop- for L-glutamic acid also at pH 10 (Fig. 13), possibly due
teran larvae, probably involved in the control of bacterialto deprotonation of the-amino group.L-lysine inhibi-
infections, in the reduction of leaf toxicity, and in the tion of L-leucine uptake increases at increasing pH val-
increase of protein solubility, also exerts an influence onues, and it is highest at pH 10 when the side chain is only
amino acid absorption mediated by KAAT1. partially charged and the-amino group is deprotonated.
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A cyclic side chain involving the carbon in position should be uncharged regardless of length and ramifica-
a, as in the synthetia-amino acids cycloleucine and in tion.
the more complex BCH, still allows a good inhibitory KAAT1 can transport-leucine at pH 5.5 and 8, but
effect =80%) (Fig. 10). The lack of-leucine uptake the maximum uptake has been observed at pH 10 when
inhibition by n-butyric acid, n-butylamine anf-hy- amino and carboxylic groups are both deprotonated,
droxyphenethylamine indicates that the presence of botwhich suggests that a deprotonateé@mino group is a
functional groups of the amino acid molecule is strictly positive feature for a KAAT1 substrate.
necessary for an inhibitory compound (Fig. 12). In par-yye are grateful to Prof. Stefano Colonna and Dr. Paola Marciani for
ticular the amino group must be located dnposition,  helpful criticisms.
indeed a drastic reduction of the inhibitory ability was
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